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FOREWORD 

.This report  i s  the r e s u l t  of a study on the buckling of segmental orthotropic 

cylinders under non-uniform a x i a l  compression. Work on t h i s  study was per- 
formed by staff members of Lockheed Missiles & Space Company i n  cooperation 

with the George C .  Marshall Space Flight Center of the National Aeronautics 

and Space Administration under Contract NAS 8-11480. 
representative was H .  Coldwater. 

Contract technical 

This volume i s  the eighth of a nine-volume f ina l  report  of s tudies  conducted 

by the department of Sol id  Mechanics, Aerospace Sciences Laboratory, Lockheed 

Missiles & Space Company. Project Manager was K. J .  Forsberg; E .  Y .  W .  Tsui 

was Technical Director and Professor D. 0. Brush of the University of Cal i fornia  

a t  Davis w a s  a Consultant f o r  t h e  work. 

The nine volumes of the f ina l  report have the following t i t l e s :  

Vol. I 

V O l .  I1 

V O l .  I11 

Vol. I V  

Uol. V 
V o l .  V I  

U o l  . V I 1  

Vol. V I 1 1  

Vol. I X  

Numerical Methods o f  Solving Large Matrices 

Stresses  and Deformations of Fixed-Edge Segmental Cylindrical  

Shel ls  

Stresses  and Deformations of Fixed-Edge Segmental Conical 

Shel ls  

Stresses  and Deformations of Fixed-Edge Segmental Spherical 

Shel ls  

Influence Coefficients of Segmental Shells 

Analysis of Multicellular Propellant Pressure Vessels by the 

S t i f fness  Method 

Buckling Analysis of Segmental Orthotropic Cylinders under 

Uniform S t re s s  Distribution 

Buckling Analysis of Segmental Ortliotropic Cylinders under 

Non-uni form Stress Distribution 

Surmnnry of Fesul ts  and Recommendations 
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T h i  volume present 

SUMMARY 

a solution t o  the buckli g problem of orthotropic cylin- 

For such a case the d r i c a l  panels under non-uniform axia l  compression. 

governing d i f f e r e n t i a l  equations cannot be separated w i t h  respect t o  the space 

var iables  and thus ana ly t ica l  solutions a re  not avai lable .  

t i a l  energy of the system i s  expressed i n  terms of the displacement components 

and t h e i r  derivatives.  

function of the displacements a t  the mesh points of a f ini te-difference ne t .  

The adjacent equilibrium theory of buckling i s  used t o  define the c r i t i c a l  

load a s  the eigenvalue of a large matrix. 

The t o t a l  poten- 

The energy formulation i s  transformed in to  a r a t iona l  

Due t o  the f a c t  t h a t  the f ini te-difference net  has two dimensions, the degrees 

of freedom of the system i s  very large. 

therefore  discussed with emphasis on computer economy. 

Possible methods of solutions a re  
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. 
NOTATION 

A matrix 

A1; A2 

b = m  

cross-sect ional  areas of s t r i n g e r  and r i n g  

circumferential  dimension of the panel 

B matrix 

C matrix 

Dx ; DT auxi l ia ry  functions 

e e  

i j  
A h  

eccen t r i c i t i e s  of s t r inger  and r ing  1’ 2 

E; El; E2 moduli of e l a s t i c i t y  of the shell, s t r i nge r ,  and r ing  

f general notat ion fo r  quan t i t i e s  i n  the energy expression 
[see Eq.  (2 .11)]  

( f ) i ;  j (f,( ) ) .  j quan t i t i e s  of f a t  the  mesh point i, j and t h e i r  
1 

derivat ives  

h spacing between mush points  i n  a x i a l  d i rec t ion  

H t o t a l  number of mesh points  along the generator 

i s  j number of row and column i n  the mesh 

J1; J2 

k spacing between mesh points  along the curved edges 

tors iona l  constanus f o r  the cross-section of s t r i n g e r  and r ing  

K t o t a l  number of mesh points  along the curved edges 

L length of panel 

M matrix 

M( ); E( ) 
nondime ns i onal i 7, e d inome n t s and s t re  s G r e  su 1 t a n  t s 
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4 

X 

Y 

1 t 2  
Y = 

h 

radius of panel 

spacing of r ings and s t r inge r s  

thickness of skin 

nondimensionalized s t r a i n  energy of the system 

nondimensionalized t o t a l  po ten t ia l  energy 

nondimensionalized mid-surface displacement components i n  

w, i, and z  ̂ directions 

poten t ia l  energy of external loads 

curvi l inear  coordinates f o r  the mid-surface of the panel 

vector of the  displacement components u, v, w 

vector of constant terns  

nondimensional geometrical parameters of the given 

s t ructure  

d i r e c t  and shear s t ra ins  

change of curvature o r  t w i s t  of mid-surface of panel 

angle subtending t h e  width of panel 

angular coordinate 

constant 

eigenvalue 

v i  



Section 1 

INTRODUCTION 

When a cy l indr ica l  s h e l l  i s  subjected t o  an a x i a l l y  symmetrical load, the  

coef f ic ien ts  i n  the l i n e a r  d i f f e ren t i a l  equations governing 

are independent of the circumferential coordinate. 

d i f f e ren t i a l  equations can be separated with respect t o  the  space var iables  

and the problem reduced t o  the solution of ordinary l i n e a r  d i f f e r e n t i a l  

equations. 

coordinate the governing d i f f e ren t i a l  equations have constant coef f ic ien ts  and 

an analytical solut ion is  readi ly  avai lable .  

obtained f o r  cy l indr ica l  panels as w e l l  as complete cylinders,  provided they 

a r e  subjected t o  uniform longitudinal loading and simple support boundary 

conditions are chosen e i t h e r  f o r  the curved or f o r  the s t r a igh t  edges. 

she l l  buckling 

Consequently the p a r t i a l  

If i n  addi t ion prebuckling stresses are independent of the a x i a l  

Analytical  solutions can be 

Buckling of the cy l indr ica l  panels of mult icel lular  tanks o r  inters tages  was 

s tudied i n  Vol. 7 of t h i s  repor t .  For s implici ty  and economy i n  computer 

ana lys i s  that invest igat ion was r e s t r i c t ed  t o  panels subjected t o  uniform 

loading and the curved edges were assumed t o  be simply supported. The s t r e s s  

d i s t r ibu t ion  i n  the cyl indrical  panels of mult icel lular  s t ructures ,  par t icu-  

l a r l y  i n  fue l  tanks, w i l l  ce r ta in ly  not be uniform, but  the analysis  of  

Vol. 7 i s  s t i l l  su i tab le  f o r  a study of the influence on the buckling load of 
such parameters a s  s t i f f e n e r  eccentr ic i ty ,  panel width, and web p la t e  bending 

s t i f f n e s s .  Also it appears possible by use of engineering judgment t o  estab- 

l i s h  within reasonable l i m i t s  an  equivalent uniform stress d is t r ibu t ion  and 

thus use the r e s u l t s  d i r e c t l y  f o r  design purposes. 

The present analysis  considers cyl indrical  panels w i t h  non-uniform stress 

d is t r ibu t ions ,  and i t s  primary purpose is  t o  serve as an  a i d  i n  the esttlblisli- 

ment of the equivalent uniform s t r e s s  d i s t r ibu t ion .  In  t h i s  case the governing 

par t ia l  d i f f e ren t i a l  equations are not  separable, and the numerical solut ion is  

1 



somewhat unwieldy. 

complete cylinders and a par t icu lar ly  simple case of non-uniform loading, 

R e f .  1 employs successfully double Fourier series. However, f o r  t he  present 

case it is  believed t h a t  numerical r e s u l t s  can be nore e a s i l y  obtained by 

use of a two-dimensional f ini te-difference net.  

needed depends on the load dis t r ibut ion as well a s  on the buckling pat tern.  

Computers presently used have suf f ic ien t  storage capacity and short  enough 

ins t ruc t ion  time t h a t  it may be prac t ica l  t o  obtain solut ions f o r  complete 

cylinders when the loading var ies  smoothly over the surface and when the 

number of circumferential waves i s  moderate. For the r e l a t ive ly  narrow 

panels, which a re  typical  for multicellular s t ructures ,  the s i t ua t ion  is  

more favorable. 

mult icel lular  s t ructures  the required computer time w i l l  be reasonable. 

Very few analyses of t h i s  type are avai lable .  For 

The number of mesh points 

It i s  expected that  f o r  s t r e s s  d i s t r ibu t ions  typ ica l  for 



Section 2 

THEORY 

By use of f in i te -d i f fe rence  approcimtions f o r  the  der ivat ives  it i s ,  of course, 

possible  t o  transform the governing p a r t i a l  d i f f e r e n t i a l  equations and the 

boundary conditions in to  a s e t  of l i nea r  simultaneous equations. 

was decided here t o  use instead an energy approach i n  combination with f i n i t e -  

difference approximtions.  

S t e in  i n  R e f .  2. 

second need t o  be approximated by f i n i t e  differences,  and that na tura l  boundary 

conditions a r e  automatically s a t i s f i e d  and thus need not be specif ied.  

However, it 

Such a procedure was f o r  instance employed by 

Its advantages a re  t h a t  no der ivat ives  of higher order tilan 

According t o  Vol. 7 we have f o r  the s t r a i n  energy of the skin,  str ingers,  and 

rings : 
L/R n/2 

where 
2(1-u2) fi u =  
Et& 

12.1) 
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El I 1 + A e  A2 
2 1 2  

2 o5 = Y + (1 - v )(F) 
s t R  

2 = 2y2 + 1 - u  

Qi 2tR2 

The s t r a i n s  

i n  the  middle-surface of the skin,  which i s  due t o  deformation a t  buckling. 

Similar ly  x, , x e  , xxO represent the  changes of curvature. 

e, J ee 9 and i n  Eq. (2.1) represent t he  changes of s t r a i n s  

I f  the  displacements of points  i n  the middle surface i n  ax ia l ,  tangential ,  

and r a d i a l  d i rec t ions  respect ively a re  denoted by u , v and w we have 

2 = u + w  / 2  
9x J X  

+ w + w 2 / 2  J 8  

= u i v  + w  w ,e , X  tx J 8  

= -w 
XX8 9 xe 

By use of equations (2.1),  (2 .2)  and (2.3) t he  t o t a l  po ten t ia l  energy can be 

expressed i n  terms of the  basic  s h e l l  parameters and the displacement components. 

Following c l a s s i ca l  l i n e a r  s t a b i l i t y  theory, we assume t h a t  the  displacements 

bnd therefore  a lso the s t r e s s  r e su l t an t s )  consis t  of  two pa r t s .  

sponds t o  the s t a t e  at impending buckling, and the other  represents ini ' ini~L~sima1 

One p:irt corre- 
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a increments from t h a t  s t a t e .  

terms of such prebuckling and incremental quan t i t i e s  and subs t i t u t ing  i n t o  

Eq. (2.1), we obtain the s t r a i n  energy i n  the var ia t iona l  form: 

Expressing the  strain-displacement r e l a t ions  i n  

(2.4) u = u o + b u + 7 6 u + + J + ~ 6 4 u  1 2  1 3  
2 .  3. 

Since the s t ruc ture  under load i s  i n  equilibrium a t  impending buckling, the 

f irst  var ia t ion  of the t o t a l  po ten t ia l  energy must vanish: 

6U = 0 

Since the incremental displacements a r e  inf in i tes imal ,  w e  may drop a l l  incre- 

mental quant i t ies  higher than second order.  

63U = 6 U  4 = 0 

Therefore the expression f o r  the s t r a i n  energy reduces t o  two terms: 

1 2  u = u + - - ; - 6 U  
0 2 .  

W e  assume t h a t  the  e f f ec t  of the prebuckling ro ta t ions  on the  magnitude of the  

buckling load i s  negl igible .  Thus the f i rs t  var ia t ion  of the s t r a i n s  and 

changes of curvature are expressedby the  l i n e a r  p a r t s  of Eqs .  (2.3) only. 

the  forms of the  integrands i n  the two terms on the  r igh t  s ide of Eq. (2.5) are 

very s imilar .  The f i r s t  contains prebuckling displacements only (subscr ipt  0 ) ,  

and the  second contains the same kind of terms with incremental displacements 

( subscr ip t  B )  and i n  addi t ion three mixed terms. 

Then 

Thus: 



where : 
1 - u  

= cy 3 u2 ax + CY 4 (v ,e t w ) 2  + 2uu , x ( V , e  + w )  + -(u 2 ,e  + v r X  )2 

2 - 2(Yp w - 2tr2(v,e + w ) w  + (Y w + ( Y w  

+ 2vy w w -t (CY7 - 2vy ) W , &  

J X  # X X  ,e8 f~ ,xx 6 ,e8 

(2 .8 )  2 2 2  
,XX ,ee 

The quant i t ies  (NX), , ( N e ) o  , and (Nxe)o  

prebuckling state. 

possible t o  l e t  these membrane forces correspond t o  the d is t r ibu t ion  under a 

u n i t  load and t o  determine the c r i t i c a l  value of t h e  mult ipl ier  

represent membrane forces i n  the 

Due t o  the l i n e a r i t y  of the prebuclrling analysis  it i s  

h . 

The t o t a l  po ten t ia l  energy of the loaded s h e l l  i s  the sum of the s t r a i n  energy 

U I n  a buckling a m l y s i s  the 

c r i t i c a l  load i s  defined as the load a t  which the second var ia t ion  of t he  t o t a l  

po ten t ia l  energy achieves a re la t ive  minimum value of zero. 

considered, the second var ia t ion  of the t o t a l  po ten t ia l  energy i s  equal t o  

1 /2  6% . 
respect t o  the  incremental displacement components of the expression: 

and the poten t ia l  energy of the external  forces .  

For the  loading 

Therefore the c r i t i c a l  load is  determined by minimization with 

where 

( 2 . 9 )  

(2.10) 

When the prebuckling loads ( N  ) , (Ne), , and (Nxe)o  a re  uniform, :ui 

ana ly t i ca l  solut ion i s  readi ly  available,  as has been shown i n  V o l .  7. 
x o  

When the prebuckling loads a re  not uniformly d is t r ibu ted  the governing p a r t i a l  

d i f f e r e n t i a l  equations representing a minimum value of the functional i n  

E q .  (2.9) a re  not separable. 

The spacing between mesh points i n  t h e  a x i a l  and circumferential  direct ions arc 

Therefore, a f ini te-difference mesh i s  introduced. 

G 



respectively,  

L b '  
= (m and = (K-1)R 

where H i s  the t o t a l  number of mesh points  along the generator and K i s  
the t o t a l  number of mesh points along the curved edges. 

ca te  posi t ion i n  the a x i a l  and superscripts indicate  posi t ion i n  tangent ia l  

direct ion,  quant i t ies  ( f )  occurring i n  the energy expression and t h e i r  deriva- 

t i v e s  a re  subst i tuted by 

If subscripts indi-  

f = (f): 

(2.11) 

Furthermore, the  in tegra ls  are replaced by f i n i t e  summations and the energy i s  

expressed i n  terms of displacement components u, v, and w a t  the mesh points,  

as discussed i n  the following section. 

For def in i t ion  of the boundary conditions f i c t i t i o u s  mesh points  are defined 

outs ide the panel. The load dis t r ibut ion in the prebuckling analysis  i s  symmet- 

r i c a l  about the plane 8 = 0 . Therefore only one-half of the panel needs t o  

be considered but the buckling pa t te rn  can be e i t h e r  symmetrical o r  a n t i -  

symmetrical about t h i s  plane. The boundary conditions a t  0 = 0 a re  

7 



I 
i . 

For symmetry For antisymmetry 

= o  Me = 0 

Qe = 0 Ne = 0 

W = o  u = o  

Nxe 

, e  
(2.12) 

V = o  w = o  

I n  both cases the f i rs t  two conditions are automatically s a t i s f i e d  i n  :I 

buckling analysis  based on the  energy method and only the l as t  two need t o  

be enforced. 

conditions.  Hence: 

A t  the  panel edges the analysis  here assumes simple support 

as x = 0 and x = L/R a t  CI = a / 2  

N = O  e Nx = 0 

Mx = 0 

w = o  
v = o  

Me = 0 

w = o  
u = o  

(2.13) 

Here again the  f i r s t  two conditions i n  each of the  two groups a r e  automati- 

c a l l y  sa t i s f i ed .  

the  displacement components may be eliminated from the  energy expression. 

remaining values of the  displacements a t  the meshpoints may be considered 3 s  

the  generalized coordinates of t he  system. With boundary conditions as specif ied 

by Eq. (2.13), the energy of the external forces vanishes and the t o t a l  po ten t i a l  

energy of the system reduces t o  the s t r a i n  energy. Hence minimization of the 

s t r a i n  energy with respect t o  the generalized coordinates s i g n i f i e s  equilibrium. 

The minimization procedure leads t o  a set of homogeneous l i n e a r  simultaneous 

equations.  The lowest value of the load parameter, h , which allows :I non- 

t r i v i a l  solut ion of this system corresponds t o  the c r i t i c a l  load. 

By use of boundary conditions specif ied here a number of 
The 

The quan t i t i e s  (N,), , ( N e ) o  , and (Nxe)o  

obtained from the analysis  presented i n  Volumes 1 1 - V I .  However, it would bc 

impract ical  t o  read-in such a large quant i ty  of data, and thus i t  i s  necessary 

t o  compute the prebuckling stress d i s t r ibu t ion  in te rna l ly .  These coniput:~ Lions 

w i l l  here be based on the energy approach. 

i n  E q .  (2.7) could for  inslrtnct. bc 

8 



The prebuckling membrane forces w i l l  be determined by use of the equilibrium 

equations, which can be derived from the  t o t a l  po ten t ia l  energy of t he  system. 

The energy consis ts  of two pa r t s ,  t h e  s t r a i n  energy as given by U i n  

Eqs. (2.6) and (2.8) and the potent ia l  energy of the  external  forces .  

loads on the  edges of the  panel a r e  shown i n  Fig.  1. 

symmetric about 0 = 0 . At the curved edges the  external  loads a re  : txial  

and a t  the s t r a igh t  edges only a shear force can be applied.  

0 
The 

They a r e  assumed t o  be 

X I 0  F i g .  1 

Nondimensional load parameters are  introduced such tha t  

N1(0)  = il(l - LJ 2 ) / E t  

2 
N 2 ( 0 )  = G 2 ( 1  - u ) / E t  

N3(x) = G3(1 - v 2 ) / E t  

If t h e  poten t ia l  energy i s  nondimensionalized i n  t h e  same way 3 s  tlie sLmin  

energy 
+d/P 

Lu1(0) N l ( 0 )  -1 u,,(e) N , , ( Q ) I  i f (1  - 2 )  ~ 

2 c- L 

w = G  
E t R  

+ ”$ 2 u,(x) N3(x) Cix ( : ’ .lh ) 

9 



where u1 u2 and u represent the a x i a l  displacements a t  x = 0 I 

x = L/R , and 0 = -161/2 respectively.  
3 

0 

The f in i te -d i f fe rence  approximations which were employed i n  the buckling 

analysis are used here such t h a t  the t o t a l  po ten t i a l  energy i s  given i n  terms 

of the  displacement components a t  the mesh poin ts .  

i den t i ca l  t o  those used i n  the buckling analysis  except f o r  the  nonhomogeneous 

conditions which iden t i fy  the edge loading. 

The boundary condition; a r e  

A t 0 = O  [ (QO)o  = 01 
= o  

W = o  

V = o  

NXe 

, e  

A t  e = 012 LNe = 03 

C% = 01 
W = o  

A t  x = 0, L/R [MX = 03 

w = o  
v = o  

N , ( Q )  a t  x = 0 

I n  each of these groups the conditions within brackets correspond t o  iiiinirtium 

energy and w i l l  therefore be automatically s a t i s f i e d .  The external  loads 

represented by ;l(e) , %,(e) , and 

must s a t i s f y  the  conditions of s t a t i c  equilibrium. 
(x )  a r e  not mutually independent but  3 

10 



1 

I 

The boundary conditions and the condition of minimum energy cons t i tu te  a 

l i n e a r  equation system w i t h  the displacements a t  the  mesh points as unknown:;. 

After  solut ion of t h i s  system the prebuckling membrane forces i n  Eq. (2.9) 
can be found by use of the strain-displacement re la t ions  Eqs. ( 2 . 3 )  and Hooke's 

Law. 

11 
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Section 3 
METHOD OF NUMERICAL ANALYSIS 

In connection w i t h  the  energy formulation of the previous section, we in t rodmed 
a two-dimensional mesh net  of displacement components u , v and w with 

mesh l i n e s  p a r a l l e l  t o  the a x i a l  and circumferential  coordinates (x  and 0 ) .  

example below (Figure 2)one-half c,f a cy l indr ica l  panel i s  covered by a rectangu- 

l a r  mesh with uniform spacings h and k i n  the x and 8 direct ions.  

I n  an 

1 2 3 4 5 Column 

Row 

Fig. 2 

In t h i s  example, rows 1 and 6 and column 1 cons is t  e n t i r e l y  of f i c t i t i o u s  

points ;  rows 2 and 5 a r e  the boundaries x = 0 and x = L/R respectively; 

column 2 i s  the boundary 

o r  antisymmetry a t  8 = 0 . 
8 = -n/2 ; column 5 represents a plane of symmetry 

and ITP a re  defined as follows : 
j 

Two aux i l i a ry  functions DXi 

0 i f  i s 1  o r  i 2 H  

1/2 i f  i = 2 o r  i = H - 1 
1 i f  2 < i  < H - 1  

0 i f  j s l  o r  j Z K + 1  

DT = 1/2 i f  j = 2  o r  j = ~  

1 if  2 < j < K  

12 

There H and K a r e  the t o t a l  numbers of rows and columns respect ively in 

the  mesh covering. 

J 1 
a 



An approximation of the energy i s  obtained through replacement of the integra- 

t i o n  i n  Eq.  ( 2 . 9 )  by f i n i t e  summations: 

The values of r a n d  9 i n  terms of the displacement components u , v , and 

w a r e  determined from the f i n i t e  difference E q .  (2 .11) .  Hence becomes a 

ra t iona l  function of the d i sc re t e  variables u’ v’ and w j  (see Eq. 2.12). 

Minimization of then leads t o  the l i n e a r  algebraic system: 
i i i 

Rearrangement 

i = l , H  

j = l , K  

of the f i n i t e  summation of E q .  (3.2) gives 

- 
U = hk(U1 - hU2) 

where 

(3 .4)  

A f t e r  a straightforward but lengthy calculation, tlie equations (<.3) c:m L e  

defined and a r e  shown i n  Table I. 

I n  order t o  u t i l i z e  the i t e r a t i v e  methods described i n  V o l .  I, a two-line 

ordering of the dependent variables u v , and w i s  adopted. The order 

of t he  mesh s t a t ions  i s  shown i n  Fig. 3. 



Fig. 3 

The three unknown displacement variables a t  each mesh s t a t i o n  are assigned 
successive posi t ions i n  the overal l  system. The t o t a l i t y  of displacement 

unknowns i n  each successive p a i r  of mesh rows then const i tutes  a block of 

unknowns. 

same order, a banded matrix A i n  block tri-diagonal form i s  obtained. I n  a 

similar manner, the expressions aU2/au: , aU2/av: , aU2/aw: lead t o  a ra ther  

sparse matrix B with the same form as A . 

When the expressions aU,/aui , aU,/avi , aU,/awi a r e  l i s t e d  i n  t h e  

The displacement boundary conditions required f o r  the buckling problem can be 

introduced without d i f f i c u l t y  resul t ing i n  a s l i g h t  modification of the A and 

B matrices. 

value problem 

The l i n e a r  system (3 .3)  can now be expressed as a matrix eigen- 

(A - XB)X = 0 (3 .5)  

where X i s  a vector of displacement components u , v and w . The least  

value of A 

load. 

f o r  which E q s .  (3.5) can be s a t i s f i e d  corresponds t o  Llie c r i t i c a l  

14 



The solution of Eq. (3.5) poses great d i f f i c u l t i e s  when a large number of 

equations a r e  involved. 

eigenvalue problem of symmetric matrices, such a s  the Givens o r  Householder 

reductions ( R e f .  3 ) ,  a re  not feasible i n  this case. 

required i s  prohibit ive,  p r i m r i l y  because the original banded form of the 

matrices i s  not retained throughout the computation. Fortunately, only the 

minimum eigenvalue of (3.5) i s  required f o r  the buckling problem. 

circumstances there a re  two approaches which can be considered feasible  : 

Preferred methods f o r  the solution of the general 

The computational e f f o r t  

Under these 

Define the f inc t ion  f ( z )  by f ( z )  = Det (A - zB) 

Since the eigenvalues of (3.5) a re  the zeros of 

f o r  obtaining the roots of functions can be applied.  The main computational 

e f f o r t  is the repeated calculation o f  t h e  determinant of a la rge  matrix. 

Such methods a r e  of ten  useful f o r  numerical exploration of the eigenvalue 

d i s t r ibu t ion  and can be used t o  obtain pa r t i cu la r  eigenvalues. 

l e s s  close e s t i m t e s  of the eigenvalues a re  avai lable ,  the cost  may be 

excessive. 

f ( z ) ,  i t e r a t i v e  techniques 

However, un- 

The power i t e r a t i o n  (Ref. 4), on the other  hand, can be readi ly  adapted t o  

obta in  the minimum eigenvalue of ( 3 - 5 ) .  
ca r r i ed  out i n  a manner which takes advantage of the sparseness of the A and 

B matrices. The power i t e r a t i o n  f o r  any matrix M i s  defined by 

Furthermore, the computations can be 

x1 = Mxo 

'i+l = mi 

= Mix 
xi 0 

The i t e r a t e s  can a l so  be wri t ten i n  the form 

( 3 . 6 )  

Based on the properties of high powers of matrices, i t  can be shown t l i a t  the 

i t e r a t i o n  (3.6) converges t o  t h e  dominant eigenvector of M when the corre- 

sponding eigenvalue i s  real and not multiple. T h i s  pr inciple  can be used t o  

8 



0 obtain an i t e r a t i o n  which converges t o  the minimum eigenvector of (3.5).  
Suppose 

AX = ABX 

Then i f  A i s  non-singular, 

A-$X =  AX ( 3 . 7 )  

Thus X i s  an eigenvector o f  t h e  matrix A-$ and the eigenvalues of  (3 . ' ' )  
a r e  the  reciprocals of the eigenvalues of (3.5).  
therefore be applied t o  obtain the dominant eigenvector of 

corresponds t o  the minimum eigenvalue of (3 .5) .  
defined by 

The power i t e r a t i o n  can 

A-$ 

The resu l t ing  i t e r a t i o n  is  
which 

AX1 = BX 
0 

Each s t ep  i n  t h i s  i t e r a t i o n  requires the solution of a l a rge  l i n e a r  system, 

AX = Y . The two-line cycl ic  i t e r a t i v e  methods described i n  Volume I, Section 3 
can be e f f i c i e n t l y  applied t o  t h i s  problem. A s ign i f icant  accelerat ion of the 

power i t e r a t i o n s  ( 3 . 8 )  can of ten be achieved by a s h i f t  of the eigenvalues. 

Let AX = hBX , and l e t  p be a sca la r .  Then 

(A - pB)X = AX - PBX = ( A  - P)BX 

or (A - pB)X = pBX 

where 
p, = A - p  

( 3 . 9 )  

Thus the  eigenvectors of ( j . 9 )  a r e  the  same as those of ( 3 . 8 )  and the eigen- 

values p, have simply undergone a t rans la t ion  by the s c a l a r  p . 

16 



The corresponding power i t e r a t i o n  now takes the form 

(A - pB)X1 = BXo 

If p i s  l e s s  than but reasonably close t o  the lowest eigenvalue, h ,  con. 

vergence may be a t ta ined  i n  two o r  three i t e r a t ions .  
I 

The solution of the prebuckling s t r e s s  d i s t r ibu t ion  w i l l  a l s o  be obtained by 

use of a two-dimensional f i n i t e  difference mesh. 

numerical analysis  of t h i s  problem canbebased on the mathematical apparatus 

presented i n  connection w i t h  the buckling problem. 

Fortunately much of the 

The poten t ia l  energy of a cylindrical  panel consis ts  of two pa r t s ,  the in t e rna l  

s t r a i n  energy given i n  E q s .  (2.6)-(2.8) and the poten t ia l  energy of the 

external  forces given i n  Eq.  (2.14). 

U i s  already available from Eq. (3.4) 
An approximation f o r  the  s t r a i n  energy 

0 

I n  a s imilar  manner, an approximation f o r  the poten t ia l  energy of the external  

forces,  W , 
f i n i t e  summations. 

can be obtained by use of f ini te-difference approximations and 

where 
3 W = kW + kW2 + hW 1 

K 

w3 

H - 1  c 
i= 2 

(3.11) 



The minimization of the t o t a l  energy V produces a l i n e a r  equation system 

which must be solved for the  unknown displacements 

where 

3 V = hkUl + kW + kM + hW 1 2 

w i t h  respect t o  the dis- u1 The expressions f o r  t h e  p a r t i a l  derivative of  

placement unknowns have already been given i n  Table I. 

The complete system of l i n e a r  equations f o r  the  prebuckling problem i s  obtained 

through addition of 

- = IX.N (Xi) 
J 1 3  

aUi 

All other  p a r t i a l s  of W are zero. If the ordering of equations and unltnowns 

described previously for the buckling problem i s  followed, we obtain a matilx 

equation 

cx = Y (3.15) 

The matrix C i s  a banded block tri-diagonal m t r i x  which differs  from the 

m t r i x  A 

for the d i f fe ren t  boundary conditions. 

of equation (3.5)  only where modifications have been nkqde t o  provide 
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0 Y 

t i ves  (3.14) but a l so  including some terms derived from the non-homogeneous 

boundary conditions. The solution of (3.15) can be e f f i c i e n t l y  obtained by 

using a two-line cyclic i t e r a t i v e  method as described i n  Volume I. It should 

be noted t h a t  l i t t l e  addi t ional  programming e f fo r t  i s  required t o  solve the 

system (3.15). The subroutines used t o  solve the system AXi+l = BXi f o r  the 

buckling problem can be used w i t h  only minor changes t o  solve CX = Y since 

C and A have ident ica l  forms and d i f f e r  i n  only a f e w  terms. 

i s  a vector of constant terms obtained primarily from the  p a r t i a l  deriva- 

When the displacement components u, v and w have been found, the prebuckling 

s t r e s s  d i s t r ibu t ion  can be eas i ly  computed using f i n i t e  difference approxima- 

t ions f o r  the derivatives i n  the equations 

N 
X 

1y u + u(v2e + w )  - 3 *x 
(Yw 1 ,xx 

Ne = C Y ~ ( V , ~  + W )  + VU - CY w , x  2 ,ee 
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